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Abstract

Based on anatomical and physiological data pertaining to several moth species and the cockroach, we propose a
neural model for pheromone discrimination in the insect antennal lobe. The model exploits the variety of neuronal
response patterns observed in the macroglomerulus, and predicts how these complex patterns of excitation and
inhibition can participate in the discrimination of the species-specific pheromone blend. The model also allows us
to investigate the relationship between the distribution of observed response patterns and the neural organization
from which these patterns emerge. Chem. Senses 21: 19-27, 1996.

Introduction

One of the most striking features of neural olfactory pro-
cessing and, in particular, olfactory processing in the insect
antennal lobe, seems to be the variety of temporal response
patterns (excitation versus inhibition) exhibited by olfactory
neurons, and the variations of these patterns in response to
stimulus quality (Sun et ai, 1993; Meredith, 1986). In
this paper, we investigate how the response patterns of
pheromone sensitive neurons in the insect antennal lobe can
convey information about odor quality to higher order
integration centers in the brain.

Temporal response patterns seem to be as important for
olfactory pheromone processing in the specialist system as
for the more complex odor processing tasks achieved by the
generalist system, as it has been observed that '... the
temporal patterns of these cells to presentation of the natural
pheromone blend is clearly different than the responses to

each pheromone component presented alone, suggesting that
these cells may act as feature detectors or, rather, mixture
detectors. The summated response to the correct blend
of pheromones might be qualitatively different from the
responses to some other pheromone blend' (Christensen and
Hildebrand, 1987b). The mechanisms by which the species-
specific pheromone blend is discriminated are not elucidated
and we propose here a modeling approach, based on anatom-
ical and electrophysiological data, which shows how the
temporal response patterns of antennal lobe neurons can
contribute to the discrimination of the species-specific phero-
mone blend.

We recently proposed a model of the pheromone pro-
cessing functional unit, the macroglomerular complex
(MGC) in the male antennal lobe (Linster et al., 1993a,b).
We showed how a simple network model can reproduce a
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number of features which have been described in the
experimental literature. The response patterns observed in
the model in reaction to simple and complex stimuli can be
classified using the same criteria as those proposed for
response patterns of olfactory neurons involved in the
decoding of general odors in the insect antennal lobe (Sun
et al., 1993) and in the vertebrate olfactory bulb (Kauer,
1974; Meredith, 1986). Furthermore, we analytically derived
the distribution of neuron response patterns as a function of
the computer model parameters (Linster et al., 1993c), and
found, by simulation, the boundaries of regions in parameter
space for which oscillatory responses occur (Linster, 1993).
Although the model satisfactorily reproduced a number of
experimental data, it was unable to account for pheromone
discrimination at the antennal lobe level. We have also
shown how neuronal oscillations can be used for pheromone
ratio discrimination in a highly schematized model of the
macroglomerulus (Linster et al, 1994a,b). In the present
paper, we show how the introduction of biological con-
straints, which had not been taken into account in the
architecture of our previous models, allows us to propose a
discrimination mechanism. No ad hoc hypotheses about
the types of response patterns observed in the model are
introduced; essentially, we further exploit the physiological
data and the modeling data from the viewpoint of blend
discrimination.

The central result of this study is the following: in the
proposed model, stimulation by a blend of pheromone
components in the species-specific concentration ratio results
in a maximal number of complex response patterns (alternate
phases of inhibition and excitation due to the same stimula-
tion) conveyed from the antennal lobe to higher centers in
the brain (e.g. the protocerebrum).

Biological background

We use data pertaining to several moth species and to the
cockroach. A number of points which are common to those
species and which are relevant to our modeling approach
are summarized below.

(1) In those species which have been studied, the blend
is distinguishable not only by the nature of its components,
but also by their precise concentration ratio (Kaissling and
Kramer, 1990), which is not replicated in other species. This
might facilitate the reproductive isolation between two or
more sympatric species which share similar activity cycles
and use the same pheromone components in different ratios.

The motivation of the present paper is to propose a possible
mechanism for the discrimination of the concentration ratio.

The next five points are taken into account in the very
design of our model.

(2) Most sexual pheromones are two- or multicomponent
stimuli (Kaissling, 1987); for each component there is a
separate receptor cell type, and non-overlapping molecular
spectra (Boeckh and Selsam, 1984; Christensen etal., 1987a).

(3) The axons of the pheromone specialist receptor cells
project into a specific part of the antennal lobe: the macroglo-
merular complex (MGC) [for a review see (Masson and
Mustaparta, 1990)].

(4) In some species there is evidence that functional
specialization exists within MGC regions: physiologically
distinct types of receptor cells project into different regions
of the MGC (Hansson et al, 1992). Antennal lobe neurons
which respond preferentially to one component and not to
the other can often be distinguished by extensive dendritic
arborizations in sub-regions of the MGC (Boeckh and
Sefsam, 1984; Hosl, 1990; Kanzaki et al, 1989).

(5) In the MGC, two types of antennal lobe neurons
process pheromonal information: local intemeurons (which
have arborizations restricted to the antennal lobe) and
projection (or output, relay) neurons, whose axons project
to higher order processing centers. Antennal lobe neurons
typically exhibit action potentials (Christensen and
Hildebrand, 1987a; Masson and Mustaparta, 1990).

(6) Synaptic interaction in the MGC includes connections
of primary afferent cells with local intemeurons, as well as
synaptic contacts between antenna! lobe neurons (local
intemeurons and projection neurons) (Malun, 1991). Local
intemeurons seem to be responsible for most of the inhibitory
synaptic activity (Christensen and Hildebrand, 1987b), and
polysynaptic pathways between primary afferent and projec-
tion neurons (also via excitatory intemeurons) seem to
be the rule in the moth (Olberg, 1993; Christensen and
Hildebrand, 1989b), and in the cockroach as well (Boeckh
etal., 1989; Distler, 1990).

Finally, the simulations of our models are in agreement
with the next two experimental observations.

(7) Based on their electrophysiological responses to phero-
mone stimulation, three classes of antenna! lobe intemeurons
and projection neurons can be distinguished in the MGC:
(i) neurons which respond preferentially to one component
but not to the other; (ii) neurons which respond in a similar
fashion both to single components and to the blend; and
(iii) neurons which show qualitatively different responses to
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stimulation with one component or another, and with the
blend (Burrows et al, 1982; Olberg, 1983; Christensen and
Hildebrand, 1987b; Christensen et al., 1987b, 1989). Neurons
of the third class respond with inhibition to one component,
with excitation to the other, and with a mixed response of
inhibition and excitation to the presentation of the blend.

(8) In the moth, neurons which receive mixed input from
the two receptor cell types have been shown to follow pulsed
stimulation up to a cut-off frequency: blocking of GABA
diminishes this behavior by reducing the inhibitory phase
of the response pattern (Christensen and Hildebrand, 1988;
Christensen et al., 1989b).

Simulations

On the basis of experimental facts (2)—(6) summarized
above, we build and simulate a model with simple neural
elements (Figure 1), whose connectivity is random, but
constrained by anatomical data:

(1) contraint 1: we consider a blend of two components A
and B; two groups of receptor cells RA and RB, sensitive
to components A and B, respectively, project into
functionally different layers LA and LB of local inter-
neurons;

(2) constraint 2: each local interneuron has a dense dendritic
arborization in one of these areas, and a sparse arboriza-
tion in the other;

(3) constraint 3: projection neurons may receive input
from all interneurons, but no direct afferent input from
receptor cells.

The modeled neural elements are discrete time probabilis-
tic neurons with memory which have been described in
detail in previous models (Linster et al., 1993a); equations
and parameter values are given in the appendix.

A network is defined by the following parameters:

(1) the number of local interneurons N and the number of
projection neurons NP;

(2) the probability n, that a given interneuron is inhibitory;
the probability that it is excitatory is ne = 1 — n,;

(3) the probability P^j that a connection exists between a
given inhibitory interneuron and a receptor cell sensitive
to A, and the probability PBi that a connection exists
between a given inhibitory interneuron and a receptor
cell sensitive to B; complying with constraint 1, one

has PM= I — PBi; probabilities PAe and P^ are similarly
defined, with PAe = 1 - P^;

(4) the connectivity c, which is the probability that a
connection exists between any two interneurons; it was
shown in (Linster et al., 1993c) that the connectivity
must be sparse in order for the full variety of responses
to be observed;

(5) the probability cp that a connection exists between a
given interneuron and a given projection neuron.

Therefore, the number of excitatory interneurons in layer
LA is a binomially distributed random variable with expecta-
tion value A'A; = N H /A , and variance N n/P^ (1 - rij

Similarly, one has:

Nfo = N nj3^ (expectation value of the number of

excitatory interneurons in layer LA),

ÂBe = A' Wê Be (expectation value of the number of
excitatory interneurons in layer LB),

A^B, = N TijPBi (expectation value of the number of
inhibitory interneurons in layer LB),

with n,: = 1 - nt, PM = 1 - PSi and PAe = 1 - P^.

If we make the simplifying approximation that the number
of excitatory and inhibitory intemeurons in each layer is
equal to its expectation value, the number of connections
that each projection neuron receives from the excitatory
interneurons of layer LA can be estimated as being NAccp;

similarly, it receives approximately Npjcp connections from
inhibitory interneurons of layer LA, N^p connections from
excitatory interneurons of layer LB, and NB!cp connections
from inhibitory interneurons of layer LQ.

All simulations presented in this paper were performed
with n, = 0.7 (thus ne = 0.3), c = 0.1 and cp = 0.5.

Each network realization was obtained as follows:

(1) parameters n and NP were chosen;
(2) for each interneuron, a realization r of a pseudo-random

variable with uniform distribution in [0,1] was generated;
if r < nh the neuron was considered as inhibitory,
otherwise it was excitatory;

(3) for each inhibitory interneuron, a realization r of a
pseudo-random variable with uniform distribution in
[0,1] was generated; if r < P^, a connection was made
from #A, otherwise it was made from RB; a similar
procedure was used for each excitatory interneuron;
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(4) for each pair of interneurons, a connection was made
between them with probability c, using a similar proced-
ure;

(5) for each pair made of one interneuron and one projection
neuron, a connection was made with probability cp,

using a similar procedure; no direct afference from
receptor cell to projection neuron was made (constraint
3).

In order to obtain statistically significant results, we
generated 200 network realizations for each set of parameters
[N, Np, Pfa, PAe}; each realization was simulated, and the
responses of the interneurons and projection neurons to
various stimulations (which will be detailed below) were

Receptor cells R A

responding to component A
Receptor cells R B

responding to component B

Interneurons

Excitatory

Inhibitory

Projection
neurons

Figure 1 Model architecture: the projection of receptor cells onto
interneurons is constrained: interneurons may receive afferent synapses
from one type of receptor cell (sensitive to input A or input B) only.
Projection neurons do not receive direct afferent input from the receptor
cells; it is their response which carries the output from the MGC to
higher order integration centers in the brain. The connectivity between
interneurons is sparse.

stored. Since we are interested in the distribution of response
patterns, we designed an automatic classifier which assigned
each response to one of four pattern classes: pure excitation,
pure inhibition, mixed responses (alternate phases of excita-
tion and inhibition) and non-response (the activity during
stimulation differed from spontaneous activity by less than
10%). Examples of responses belonging to the first three
classes are shown on Figure 2 (which will be described in
more detail below). The classifier performed pairwise linear
separation of the classes; since there are four classes, the
classifier features six pairwise linear separators, trained by
the Perceptron rule with the Pocket algorithm (Gallant,
1986); a detailed description of the classifier can be found
in (Linster, 1993).

Each realization was submitted to stimulations with vary-
ing input ratios (A/B) with constant total amplitude A +
B = 6; for each stimulation, the response pattern of
each projection neuron was classified and the frequency of
occurrence of each class was computed; finally, the frequency
of each response pattern class to a given stimulation was
averaged over the 200 network realizations.

Results

The results described in this section show that response
pattern distributions vary with input ratio; hence, they can
be used as representations of the composition of the blend.
It can easily be shown that networks with identical layers
Z,A and LB cannot discriminate whether input A or input B
is dominant, because, on the average, projection neurons
receive the same signal from input A and from input B, via
local interneurons (Linster, 1993). It is therefore necessary
to introduce a more specific connectivity in order to tune
the model to a particular ratio or to a range of input ratios
(A > B) or (B > A). We break the symmetry of the network

TypeA|
neuron

Pure excitation

Input A:^"
Input B:

Mixed response XT

500 ms

Figure 2 Responses of two projection neurons to stimulate with A alone, B alone and (B = A) in a non-symmetric network. The top two lines show
the action potentials and the membrane potentials of a type B projection neuron (excited by B); the bottom two lines show the action potentials and the
membrane potential of a type A projection neuron (excited by A). N = 63, NP = 7 (N^ = 3.1, NM = 17.6, /VB,. = 1.3, Afe, = 41).
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excitation
mixed
inhibition

excitation
mixed
inhibition

Figure 3 Relative frequencies of projection neuron response patterns as a
function of the input ratio A/B for network realizations with two parameter
sets. N = 63, NP = 7 (a) PN = 0.07 (N^ = 3.1, N^ = 17.6, N^ = 1.3,
% = 41) (b) PA, = 0 93 (N^ = 41, N& = 1.3, N& = 17 6, N& = 3 1)

by changing the probabilities that a receptor cell of a given
type connects to an inhibitory (respectively excitatory)
interneuron1, i.e. by assigning unequal values to PM and
PAe. For simplicity, we consider in all the following that
PM = PBC and that PAe = PB|; since P^ = I - PBi and
PAc

 = 1 ~ ''Be. o n e n a s PM = 1 ~ ''AC- By SO doing, we
allow the dissymmetry of the network to be characterized
by one single figure PAl: networks with PAi — 0.5 are
symmetrical, whereas networks with PAi = 0 or PAl = 1
have maximal dissymmetry.

Response patterns
Figure 2 shows that, in agreement with observation (7)
of the biological background, interneurons and projection
neurons may exhibit qualitatively different responses to
stimulations with one component, with the other, or with
the blend. In the simulation shown, stimulations are per-
formed by component A alone, by component B alone, and
simultaneously by both components in equal concentrations;
in order to exhibit the phenomena clearly, the network was
made very asymmetrical: PAi = 0.07 (hence, PAt = 0.93),
so that approximately 93% of all excitatory interneurons are
in LA, while 93% of all inhibitory interneurons are in LB

'Symmetry breaking can be achieved by other ways, such as introducing
different stimulus/response curves for the receptor cell types (Linster, 1993).

(the choice of the value of Pfj is purely illustrative and is
not related to any biological data). The 'type B ' neuron
shown exhibits weak inhibition by component A, weak
excitation by component B, and a mixed response to a
stimulation by A and B simultaneously. The 'type A' neuron
responds with strong excitation to A, is strongly inhibited
by B, and responds with a strong excitation followed by a
weaker excitation and a strong hyperpolarization (mixed
response) to the simultaneous presentation by A and B.

Distribution of response patterns:
representation of the blend composition
For illustration purposes, we consider a set Nx of network
realizations with P^ = 0.07 and a set N2 of networks with
PA, = 0.93; hence, in networks N,, 93% of excitatory
interneurons are in LA, while 93% of inhibitory interneurons
are in L^. Therefore, the projection neurons of networks N{

receive mainly excitatory inputs from interneurons connected
to receptors cells RA, and mainly inhibitory inputs from
interneurons connected to receptor cells R#. It may be
conjectured that the maximum number of mixed responses
occur for blend compositions such that the excitation (coming
essentially from layer LA) is equal to the inhibition (coming
essentially from layer LB). Neglecting the small proportion
of minority interneurons in both layers, and assuming that
all neurons operate below their saturation threshold, the
maximum frequency of mixed responses can be predicted
to occur when nAc A = nB, B, where A and B stand for the
concentrations in components A and B, respectively.

Figure 3a (N|) and Figure 3b (N2) show the relative
frequencies of response patterns of projection neurons for a
range of input stimulations (A/B). The number of mixed
responses is maximal for a given ratio (A > B) in Figure
3a or (B > A) in Figure 3b. From the above approximate
argument, it can be predicted that the maximal number of
mixed responses, for the set of parameters chosen, occurs
for A = 5.1 and B = 0.9 for networks of N], and for A =
0.9 and B = 5.1 for networks of N2. The results presented
on Figure 3a and 3b are in qualitative agreement with the
predictions.

In order to clarify and to illustrate the above considera-
tions, we now analyse in detail the neuronal responses of
networks with a specific set of parameters. We chose a set
of parameters leading to a maximal number of complex
response patterns of the projection neurons for input stimula-
tion with A/B 3 5/1 (Figure 4 shows the relative frequencies
of projection neuron response pattern as a function of varying
input ratios). The average numbers of response patterns
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observed in response to stimulation with pure and mixed
components are in good accordance with physiological data
(Christensen and Hildebrand, 1987a,b; 1988; Christensen
et al., 1989). In the network realizations with this set of
parameters, on the average 85% of the excitatory and 15%
of the inhibitory LNs receive input from RA. Most projection
neurons in these networks respond with excitation to input
A and with inhibition to input B; these neurons respond
with a mixed response of excitation and inhibition to the
simultaneous presentation of A and B with A/B = 5/1. Few
projection neurons respond with inhibition to input A and
with excitation to input B; these neurons are inhibited in
response to the simultaneous presentation of A and B with
A/B = 5/1. However, the latter do respond to stimulation
with A/B = 1/5.

~°~ excitation
""•" mixed
~**~ inhibition

Figure 4 Relative frequencies of projection neuron response patterns for
varying stimulation ratios A/B in the model MGC described in the text.
Mixed responses reach a maximum value for input ratios 5/1. Stimulation
with A leads to 50% excited and 50% inhibited responses. Stimulation
with B alone inhibits 80% of the projection neurons. N = 29, NP = 6,
PA/ = 0 15, (Pee = 0.15, P& = % = 0.85, N^ = 3.0, N^ = 7 4, N& =
1.3, Nm = 17.3).

Figure 5 shows the responses of two selected projection
neurons to pulsed stimulation at 5 Hz, with varying ratios
A/B. Type A projection neurons respond with pure excitation
to stimulation with A, but cannot follow the pulsed stimula-
tion with excitatory bursts. For a range of inputs A > B,
these neurons exhibit mixed responses, and they can follow
the 5 Hz stimulation, responding to each stimulus pulse with
a brief excitatory burst followed by an inhibitory phase.
These neurons are inhibited as B increases. Type B projection
neurons are inhibited when A > B. If A and B are almost
equal, they respond with a brief excitatory burst followed
by a long inhibitory phase; we observe in Figure 5 that they
cannot follow pulsed stimulation.

For comparison purposes, we show in Figure 6 a classi-
fication, proposed by Christensen et al. (1989), for antennal
lobe neurons in Manduca sexta. These studies use two
synthetic compounds to mimic the constituents of the phero-
mone blend: bombycal (BAL), the 'major' pheromone com-
ponent in M. sexta and (E,Z)-ll,13-pentacadienal (C15),
a mimic of a second Manduca pheromone component
(Christensen and Hildebrand, 1987). 'Pheromone generalists'
respond to both pheromone components by either excitation
or inhibition; they cannot distinguish between the compon-
ents and they cannot follow pulsed stimulation. 'Pheromone
specialists' either respond to only one component and not
to the other, or they respond by excitation to one component,
by inhibition to the other and by a mixed response to the
blend. These neurons respond with qualitatively different
response patterns to the components and to the blend, and
they can detect temporal changes in the stimulus. In the

Type A
neuron

JL.i.

TypeB
neuron

input A: nnnnnnnnnnnnnnnnnnnnnnnn

^P"1 B: — - , — — — — ^ r ^ r ^ r - . r - i r - . n n n n n n

All
projection

500 ms

Figure 5 Artion potentials and membrane potential fluctuations in response to pulsed stimulation at 5Hz with varying input ratio A/B. The figure shows
the responses of two typical projection neurons in a network realization with the response pattern distribution shown in Figure 5 The first two traces
show the action potentials and the membrane potential of a type A projection neuron. The next traces show the action potentials and the membrane
potential of a type B projection neuron. The bottom trace shows the stimulation, below is shown the average activity and the average membrane potential
of all projection neurons in this stimulation. N = 29, NP = 6 (P^ = 0.15, P& = PA, = 0.85, N^ = 3.0, N& = 7.4, N& = 1.3, % = 17.3).
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L PHEROMONE GENERAUSTS

A. Cannot Discriminate Single Odors AND Cannot Code Temporal Changes

1. Excited Type
Stimulus :

BAL
C15
Blend

2. Inhibited Type
Stimulus :

BAL
CIS
Blend

Response

Response

IL PHEROMONE SPECIALISTS

A. Can Discriminate Single Odors BUT Cannot Code Temporal Changes

Stimulus

BAL
CIS
Blend

Response
(1) OR (2)
+ 0
0 +

B. Can Discriminate Single Odors AND Can Code Temporal Changes

Srimnlii*

BAL
CIS
Blend

Response
(DOR (2)

LWJUJJX 11
Figure 6 Three types of pheromone sensitive antennal lobe neurons in Manduca sexta. Courtesy of T. Christensen and J. Hildebrand, from: Christensen
etal., 1989.

model, projection neurons which can be termed 'pheromone
generalists' can be found for all types of stimuli, but they
cannot follow pulsed stimulation. Neurons which can be
termed 'pheromone specialists', however, are only active as
a response to the species-specific ratio of components (this
ratio depends on the ratio of inhibition and excitation in the
intemeuronal regions of the MGC). The mean output of the
MGC can follow pulsed stimulation only if it is delivered
at the corresponding ratio.

Discussion

The model of the macroglomerular complex in insects,
presented here, is based on a number of biological data and
on previous modeling; it proposes a detailed mechanism of
pheromone ratio discrimination and shows how the pro-
cessing capabilities of a simple network can be exploited
for ratio discrimination by an elementary breaking of sym-
metry. In our approach, stimulation by the species-specific
ratio of pheromone component concentrations results in a

maximal number of complex temporal response patterns
(alternate phases of excitation and inhibition) conveyed from
the MGC to higher integration centers. In the model, we
show that these temporal response patterns discriminate the
species-specific blend from other blends (to our knowledge,
this hypothesis has not been tested electrophysiologically).
The pure, long-lasting excitation due to the major component
alone, could lead, in higher order center neurons, to adapta-
tion and fatigue, which would not occur for mixed responses,
including periods of quiescence of projection neurons arising
from the inhibitory signals resulting from the minor com-
ponent.

Furthermore, projection neurons in the model can follow
pulsed stimulation only if the species-specific blend is
presented; this adds redundancy and stability to the system.
Pulsed stimulation with single components or other ratios
of the components cannot be followed with excitation bursts
by these projection neurons.

These results are in good agreement with electrophysiolo-
gical and behavioral data obtained on moths: pulsed stimula-
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tion corresponds to the natural stimulus situation of at
least some moth species, in which the female releases the
pheromone blend not in a continuous, but in a rhythmic
fashion (Baker et ai, 1985). In behavioural studies, meaning-
ful behavior can only be obtained by pulsed stimulus
presentation in male moths of these species. In addition, in
some moth species, the ability to follow a range of pulse
frequencies is strongest in those MGC neurons that can
integrate information about both components of the phero-
mone blend (Christensen et al, 1989; Linn et ai, 1987).

These neurons therefore aid in the male's discrimination in
that they only monitor the spatio-temporal changes in a
pheromone plume released by a conspecific female.

The architectural constraints which lead to this discrimina-
tion ability in the model are in accordance with anatomical
and physiological data in several insect species. The detected
input ratio depends mainly on the ratio of the number of
excitatory to the number of inhibitory local interneurons
which receive synapses from the receptor cell types.
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Appendix:
Equations and simulation parameters

The probability P[xj(t) = 1] that the state x,{t) of neuron i
at time t is 1 (firing):

P[x,{t) = 1] =
1

1 +

where v{i{t) is the evolution of the membrane potential:

v,<r - A/) e,{t)

with:

jj * xft - /-,-,]

where Wjj is the weight (wy = ± 1) of the synapses between
neuron j and neuron i, and r,-,- is its delay (chosen randomly
from uniform distributions).

Stimulation parameters:
x = 80 ms; r,y = [5; 10] ms for afferent connections; rtj =
100 ms (±10%) for inhibitory connections; r,j = 20 ms
(±10%) for excitatory connections; Q = 4.0; T = 1.0.
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